Et si on parlait du train à sustentation magnétique ?

Alors que le monde entier regarde les projets d’Hyperloop avec circonspection, il est utile de se pencher sur une autre technologie ferroviaire : la sustentation magnétique, que l’Europe semble avoir définitivement oublié…

Le train à sustentation magnétique ne signifie pas spécifiquement train à grande vitesse. En 1984, à Birmingham, un train opérait en monorail sur une section de voie surélevée d’environ 600m entre l’aéroport de Birmingham et la gare de Birmingham International Railway, à une vitesse pouvant atteindre 42 km/h. Mais cet unique exemplaire britannique fut fermé en 1995 en raison de problèmes de fiabilité.

Dans la grande majorité des cas cependant, le train à sustentation magnétique reste bien étudié dans le cadre de la grande vitesse ferroviaire, qui semble être sa raison d’être. C’est pourquoi cette technologie fut encore proposée lorsque la Grande-Bretagne lança les consultations préliminaires en vue de rechercher quel type de train relierait Londres au nord du pays. Le Maglev fut rapidement écarté du fait des grandes incertitudes quant à sa maîtrise technique et financière, au profit d’une ligne à grande vitesse classique, la HS2. Après l’échec et l’arrêt des essais en Allemagne, il n’y a plus de projet de ce type en Europe. En revanche, le Maglev, train à sustentation magnétique, est maintenant actif dans six endroits d’Asie, le seul continent qui y croit encore.

>>> À lire : On parle beaucoup de l’Hyperloop ces temps-ci 

Le premier Maglev d’Asie fut mis en service en Corée du Sud en 1993, sur le site de l’exposition universelle de Daejeon. La Chine a suivi en 2004 avec une liaison Maglev entre Shanghai et le nouvel aéroport de Pudong, puis le Japon se lança dans l’exploitation du train Linimo à Nagoya en 2005. La Corée du Sud a étendu la ligne Daejeon à l’aéroport d’Incheon en 2016, tandis que la société chinoise Changsha a utilisé un train de levage magnétique entre l’aéroport et une gare de chemin de fer la même année. À Shanghai, seul le train Maglev vers l’aéroport roule à plus de 400 km/h à grande vitesse. Les cinq autres Maglev ne roulent qu’a environ 110 km/h.

La technologie Maglev

Maglev est une méthode de transport qui utilise la lévitation magnétique pour transporter des véhicules dotés d’aimants plutôt que de roues, d’axes et de roulements. Avec Maglev, un véhicule est soulevé de quelques centimètres au-dessus d’un chemin de guidage, en utilisant des aimants pour créer à la fois un soulevage et une propulsion. Les trains Maglev se déplacent plus doucement et un peu plus silencieusement que les systèmes ferroviaires à roues.

Le terme Maglev désigne non seulement les véhicules, mais également le système ferroviaire, spécialement conçu pour la lévitation magnétique et la propulsion. En réalité, le terme Maglev se réfère à un seul type de lévitation magnétique. Il existe en effet deux principaux types de trains à sustentation magnétique :

  • Le type à sustentation électromagnétique (ou EMS), utilisant des électroaimants classiques. La traînée électromagnétique est ici très faible, voire nulle. L’interaction entre les aimants à bord du train et des aimants disposés le long de la voie crée une force magnétique induite qui compense la gravité et permet la lévitation. Ces aimants repoussent le train vers le haut et assurent l’existence d’une garde suffisante entre le « rail » et le train ce qui affranchit le véhicule de toute perte due à la friction. Le meilleur exemple est le Transrapid allemand sous forme de monorail.
  • Le type à sustentation électrodynamique (ou EDS), utilisant des aimants supraconducteurs. Des bobines supraconductrices sont placées dans le train et des électroaimants sont placés le long de la voie. Lorsque le train se déplace, un courant est induit dans la voie. La force résultante fait léviter le train. Le déplacement du train engendre une traînée électromagnétique très importante, d’où une consommation énergétique élevée. Le projet le plus abouti est le Maglev japonais. Les trains utilisant le système EDS ne sont pas des monorails.

Selon ses promoteurs, les avantages de Maglev sont difficiles à contester. En remplaçant le roulement par des électroaimants ou des aimants supraconducteurs, les trains en lévitation peuvent atteindre des vitesses incroyables. Les trains Maglev éliminent en effet une source essentielle de friction – celle des roues du train sur les rails – même s‘ils doivent encore vaincre la résistance de l’air. Cette absence de frottement signifie qu’ils peuvent atteindre des vitesses supérieures à celles des trains conventionnels. À l’heure actuelle, la technologie de Maglev permet de créer des trains capables de parcourir plus de 500 km à l’heure. En raison de la lévitation au-dessus de la voie, les déraillements sont quasi improbables.

Les trains Maglev peuvent accepter des pentes jusqu’à 10% contre 3 à 4% maximum pour une ligne à grande vitesse conventionnelle. Cela pourrait signifier moins d’ouvrages d’art dans les régions avec collines. Mais le projet japonais montre tout de même de 86% de la ligne serait en tunnel.

Parmi d’autres avantages souvent cités, les coûts d’entretien des voies ont tendance à être inférieurs à ceux des trains normaux. « Certaines personnes disent qu’une fois que vous avez mis en place une voie de guidage pour un train à lévitation magnétique, vous n’avez jamais à la remplacer ni même à l’entretenir » explique Laurence Blow, fondatrice du groupe de conseil MaglevTransport. Un document de Transrapid montre qu’il y a de toute manière de la maintenance à effectuer, mais à un coût inférieur de 66% par rapport à une ligne à grande vitesse conventionnelle. Un chiffre invérifiable en l’absence d’un projet concret exploité sur plusieurs années.

>>> À lire : L’histoire complète du Maglev

De grands défis, malgré tout

Comme souvent lorsqu’on parle de technologies disruptives, des clans se forment entre les pour et les contre. Avec l’absence de systèmes importants en exploitation, on manque de recul pour apprécier les avantages et inconvénients réels par rapport au chemin de fer classique, notamment sur le plan économique. Cela n’empêche pas d’avoir un angle de vue critique.

La technologie Maglev n’a plus rien de commun avec une voie ferroviaire classique : il n’y a plus les deux rails que nous connaissons depuis 200 ans. La voie elle-même forme un ensemble fermé : c’est un système à part entière qui n’est pas connectable avec un réseau ferroviaire existant et qui consomme énormément de béton et de métaux rares (pour les électroaimants). Cela pose d’emblée des problèmes importants d’insertion dans les grandes villes, puisqu’un Maglev devrait être construit à côté des voies existantes, ou carrément sur un site dédié, ce qui est très difficile dans les zones très urbanisées.

De manière générale, le Maglev, c’est encore trop d’ennemis et peu d’amis. Outre les défis financiers, il manque encore trop d’opportunités sur le marché pour construire un Maglev global. Si les Maglev exploités commercialement ont bel et bien démontré une réduction drastique des coûts d’exploitation et de leurs émissions carbones, les incompatibilités avec l’infrastructure ferroviaire existante et les coûts de construction de 50 à 200 millions de dollars par kilomètre sont devenus des obstacles insurmontables à sa pleine adoption. La proposition infructueuse d’une ligne Maglev de 1.300 km reliant Pékin à Shanghai en 2005 souligne à l’évidence ce problème financier.

Les trains Maglev nécessitent plus d’énergie que les trains conventionnels. Dans le bilan global, la puissance nécessaire à la lévitation ne représente généralement pas un pourcentage élevé de la consommation énergétique totale, car la plus grande partie de la puissance est utilisée pour vaincre la résistance de l’air, comme pour tout autre moyen de transport à grande vitesse. Cependant, à faible vitesse, la quantité de puissance utilisée pour la lévitation peut être importante, consommant jusqu’à 15% de puissance supplémentaire par rapport aux services de métro ou de train léger. De même, pour de très courtes distances, l’énergie utilisée pour l’accélération peut être considérable. Une partie de l’énergie est également utilisée pour la climatisation, le chauffage, l’éclairage et d’autres systèmes divers, comme dans tout train moderne du monde. La technologie Maglev EDS exige le maintien des bobines supraconductrices à une températures de -269°C, ce qui n’est pas sans incidences sur la consommation énergétique.

La vitesse est très importante pour la consommation d’énergie. Une étude de 2018 montre une consommation d’énergie de 99 Wh/sièges/km pour le Chuo Shinkansen à une vitesse de croisière de 500 km / h dans le tunnel, sur la ligne Tokyo-Osaka. La seule augmentation de la résistance au roulement quand on passe de 450 km/h à 500 km/h sur une voie en plein air entraîne une augmentation de la consommation d’énergie de 15 à 20%. C’est un critère important lorsqu’un gouvernement doit choisir une technologie pour le train à grande vitesse.

En revanche, si on compare à une vitesse de 330km/h, l’étude montre des chiffres inférieurs par rapport au TGV ou à l’ICE :

– 59 Wh/sièges/km pour l’ICE 3

– 48,5 pour le TGV Duplex

– 45 pour la technologie EMS Transrapid mais…

– 52,7 pour le Chuo Shinkansen en technologie EDS

Les réparations et les pièces de rechange ont un coût plus élevé que les alternatives standards. En cas de réparation ou de remplacement, le défi consiste à s’adapter au marché instable des composants électroniques. De plus, le faible marché du train Maglev et la trop grande spécificité des composants rendent les pièces de rechange très onéreuses.

Les systèmes EDS ont un inconvénient majeur. À faible vitesse, le courant induit dans ces bobines et le flux magnétique ne sont pas assez importants pour supporter le poids du train. Pour cette raison, le train doit avoir des roues ou une quelconque forme de ‘train d’atterrissage’ pour soutenir la rame jusqu’à ce qu’elle atteigne une vitesse suffisante pouvant supporter la lévitation.

Les différents types d’aimants permanents industriels nécessaires au Maglev sont classés en quatre familles, dont la plus importante se compose des terre rares grâce à leur rigidité en aimantation, à l’énorme énergie qu’ils peuvent fournir et aux champs coercitifs qui les rendent presque insensibles aux champs démagnétisants. Les terres rares posent cependant des questions quant à leur disponibilité, étant donné que le marché des objets connectés et des véhicules électriques serait amené à une forte croissance d’ici 2030. L’impact sur les prix pourrait être important.

L’Europe et l’Amérique en retrait

Des tentatives d’implanter un Maglev aux États-Unis se sont tous soldés par un échec. Comme l’explique de manière sarcastique David Brace, de Kruxe Technology : « Fondamentalement, l’Amérique est un pays de voitures, de camions et d’avions. Les États-Unis ne croient pas en ce modèle (ndlr de Maglev), car la société ‘Car, Plane & Oil’ fait pression depuis des décennies pour empêcher que cela ne se produise. »

Le continent européen, leader de la grande vitesse, veille surtout à capitaliser sur la maîtrise technique et surtout financière du train à grande vitesse classique, symbolisé par le TGV en France, l’ICE en Allemagne, les AVE de Talgo en Espagne et le modèle italien, seul pays où deux entreprises de trains à grande vitesse circulent en concurrence sur le même réseau. Le modèle européen a été vendu en Corée, en Turquie, en Arabie saoudite et récemment au Maroc. Il est systématiquement présenté à tous les projets américains. Bien loin de l’utopie Hyperloop…

Il faut cependant reconnaître que la culture européenne ne milite pas pour aller de l’avant en matière technologique. L’Europe a complètement loupé le tournant digital, puisque le Continent ne compte aucun membre des GAFAM ni aucun géant du mobile. D’où la grande terreur de voir débarquer le chinois CRRC, alors que le japonais Hitachi est déjà présent en Grande-Bretagne et en Italie.

Ces Maglev qui roulent en Asie

Le Transrapid entre Shangaï et l’aéroport de Pudong est actuellement le seul système de transport Maglev à grande vitesse au monde pour le transport de passagers. Il roule à 430 km / h sur une piste en béton de 30 km. Il a été achevé en 2004, mais aucun autre système n’a été construit et la société allemande qui l’a conçu, Transrapid, a mis les clés sous le paillasson en 2008. Le train fonctionne bien, mais ses coûts de construction furent prohibitifs. Ses coûts énergétiques sont élevés, ce qui serait dû à une traction inefficace, plutôt qu’à la technologie Maglev en elle-même (19,9 kWh par siège sur 100 km, contre 7,7 pour le train à grande vitesse).

C’est au Japon qu’un projet de Maglev semble le plus abouti. JR Central, qui exploite déjà la ligne Tokaido Shinkansen existante, prévoit d’exploiter la section Tokyo-Nagoya par technologie Maglev dès 2027 et la liaison complète Tokyo-Osaka en 2045. Appelée contournement Tokaido Shinkansen, cette ligne permettrait de réduire de moitié le temps de parcours du Shinkansen actuel, entre Tokyo et Nagoya à 40 minutes, et entre Tokyo et Osaka à 67 minutes.

Le shinkansen japonais, train à grande vitesse classique, est un élément essentiel pour la psyché nationale en tant que symbole de la puissance technologique. La volonté de construire son successeur, malgré 20 ans de stagnation économique et démographique, témoigne de la détermination du pays à rester un pionnier des technologies.

Fait intéressant : alors que généralement le gouvernement central et les administrations locales proposent de payer le coût de la construction de lignes de train à grande vitesse, le groupe privé JR Central n’attend cette fois pas l’aide financière du gouvernement, excepté un prêt de 3 milliards de yen à taux réduit.

L’entreprise privée a l’intention de supporter la totalité des 74 milliards d’euros (9.000 milliards de yens) nécessaires à la construction de cette ligne Maglev.

Cependant, nombreux sont les critiques qui considèrent le Maglev comme le symbole de tout ce qui ne va pas avec l’innovation au Japon : un éléphant blanc non rentable et assoiffé de capitaux, sans perspectives d’exportation et une menace pour le shinkansen existant. « Le maglev constitue non seulement un C’est un projet coûteux, mais aussi anormal, qui consomme de l’énergie et consomme entre quatre et cinq fois plus d’énergie que le shinkansen de Tokaido », déclaraient en 2017 les chercheurs Hidekazu Aoki et Nobuo Kawamiya.

En Chine, le consortium CRRC a récemment présenté un Maglev capable d’atteindre la vitesse de 600km/h. Compte tenu de l’énorme vitesse du train, un voyage en train pourrait être encore plus rapide que l’avion dans certaines circonstances, a déclaré Ding Sansan, responsable de l’équipe chargée de la conception du nouveau train, au journal chinois Qingdao Daily. Certains médias ont annoncé que le train entrerait en service en 2021, mais la compagnie n’a pas donné de date exacte. Les experts du rail expliquent que des années d’essais seront nécessaires avant que le train ne soit prêt à transporter des passagers. « Le Maglev chinois est à ce stade un projet de recherche », a déclaré Chris Jackson, rédacteur en chef de la Railway Gazette International, basée à Londres. « Il n’y a pas de projet ferme pour développer une voie commerciale. »

Simple distraction ou réelle opportunité ? Les développements de cette technologie et toutes les questions cruciales qui en découleront seront suivies avec beaucoup d’attention dans le secteur ferroviaire.

ND – Encyclopedia Britannica / Sarah E. Boslaugh – Maglev train

2011 – Hicham Allag – Modèles et calcul des systèmes de suspension magnétique passive -Développements et calculs analytiques en 2d et 3d des interactions entre aimants permanents

2013 – The Japan Times / Reiji Yoshida – Maglev challenge both technical, financial

2017 – Le train sur rail magnetique – ppt télécharger – SlidePlayer

2017 – Financial Times / Robin Harding – Japan’s new maglev train line runs headlong into critics

2018 – NRC/Handelsblad / Rijkert Knoppers – De zweeftrein komt met vallen en opstaan

2018 – Railway-technology.com – Will maglev ever become mainstream?

2018 – The International Maglev Board  – Energy Consumption of Track-Based High-Speed Transportation Systems

2019 – In the loop mews – Maglev – is it really the solution for Hyperloop?

2019 – NBC News – China’s new high-speed train will ‘float’ over tracks to hit 370 miles an hour

Publié par

Frédéric de Kemmeter

Cliquez sur la photo pour LinkedIn Analyste ferroviaire & Mobilité - Rédacteur freelance - Observateur ferroviaire depuis plus de 30 ans. Comment le chemin de fer évolue-t-il ? Ouvrons les yeux sur des réalités plus complexes que des slogans faciles http://mediarail.be/index.htm

2 réflexions au sujet de “Et si on parlait du train à sustentation magnétique ?”

  1. Bonjour,

    Je m’attachais ici à relater les projets qui sont déjà en service, même à petite échelle. Nous disposons maintenant d’un recul nécessaire pour évaluer cette technologie. J’ai connu le projet Swissmetro mais je le classe, arbitrairement, dans la catégorie Hyperloop. On ne l’oublie pas pour autant, mais il s’écarte tout de même des projets actuels.

    J’aime

Merci pour votre commentaire. Il sera approuvé dès que possible

Choisissez une méthode de connexion pour poster votre commentaire:

Logo WordPress.com

Vous commentez à l’aide de votre compte WordPress.com. Déconnexion /  Changer )

Image Twitter

Vous commentez à l’aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l’aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur la façon dont les données de vos commentaires sont traitées.